Kb

- DECEMBER 1981 i Vol.1 No.5

Video games
for Christmas

LG EE
ZX printer

Chess end-game

ZX-81 strings :

e .

Computers in schools = '#3& A4
More micro music | : e“j.
Vic-20 cassettes é\‘\

'_I
Pl A ¥

VIC-20 CASSETTES :.........

Lo 8 8 58

FUNCTION
GND
+5V
Cassette motor
Cassette read
Cassette write

F-6 | Cassette switch
Figure 1. Connector configuration.
Figure 2. VIA assignments.
Viami Viam2
NMI R
Cal Cal +— Cassetle read
PAD PAD
PAY Pay
Paz2 PAZ
PA3 Pad
Pad Pad
PAS PAS
PAG —— Cassetie awich PAG
PAT PAT
CA2 — Cassette molor CA2
cB1 om
PBO PEO
PB1 Pt
PB2 PB2
PB3 PB3 -+— Cassette wiite
PB4 PBs
| | rES PES
PBg PBE
PE7 PET
ce2 cae2
59110 59}20
SOMF So12F

Hardware

THE VIC HAS a single, external casserte unit
which is used for program and data storage.
This unit is connected to the Vic by six lines
— write, read, motor, sense and two power
lines, ground and +5V. The connections are
shown in figure 1.

The cassette is controlled by I/O lines from
the two VIA (versatile interface adaptor) chips,
and you can sec the source of each of the
cassette-control lines from the VIAs in figure
2,

The cassette-motor power-supply lines are
connected to the interface chips via a three-
transistor driver which is used to boost the
power and voltage — it allows the motor to be
driven directlv. The output to the motor is an
unregulated +9V at a power rating of up 1o
500mA. The cassette-deck motor can be
turned on and ofl by roggling the CA2 line on
6522 # 1.

POKE 37148, PEEK {37148! AND 241 OR 14
turns the motor on:

POKE 37148, PEEK (37148 OR 12 AND NOT 2
turns it off.

The sense-line input, line PA6 on VIA# 1, is
connected to a switch on the cassette deck
which senses when either the play, rewind or

fast-forward buttons have been pressed. The
switch is only required to sensc whether or not
you have pushed the play bunon during a
read- or write-to-tape routine. This is done by
a subroutine at SF8AB.

If either the rewind or fast-forward button is
pressed accidentally instead of the play button,
the system will be unable to tell the difference
and will act as if the play button had been
pressed. Because recording will start as soon as
the play button has closed the sense switch,
you must press the record button first in any
record routine.

The cassette read line is connected tothe CA|
line of VIA # 2 and the cassene write line to
line PB3 of VIA # 2. During a read operation,
the operating system uses the setting of the
CAl interrupt flag to detect transitions on the
cassette-read line. The read and write lines are
controlled entirely by the operanng system —
the only hardware required is signal-amplifica-
tion and pulse-shaping circuitry.

These circuits are contained on a small,
printed-circuit board within the cassete deck.
Their function is to give correct voltage and
current 1o the record head and 1o amplify the
input from the read head. That gives a 5V
square-wave output capable of producing an
interrupt on the CAl or CBI lines.

Figure 3. Cassette interface circurt.

Cassette operation techniques

FOR NORMAL purposes the casserte deck is
assigned the device number 1. The IO
number of the device currently in use is stored
in location 186. This number, the logical file
number, and the secondary address are used
when saving or retrieving darta files from the
cassette deck.

The logical file number can be any number
from 1 to 255 and is used to allow multiple
files 10 be kept on the same device. It is of little
use with cassetie tape and is intended
primarily for floppy-disc units. Usually the
logical file number is the same as the device
number and is stored in location 184,

Since it determines the operational mode of
the cassette, the secondary address is
important and the current one is stored in
location 185. The normal default value is zero.
If the secondary address is zero, the tape is
Opened for a read operation. If it is set to one,
it is opened for a write operation and if two, it

is opened for a write, and an end-of-tape
header is forced when the file is closed.

The Vic operating system is configured to
allow two types of file to be stored on cassette:
program files and data files. These names are
however rather misleading since a program
can be stored as a data file and data can be
stored as a program file.

The difference between the two types is not
in their application but in the way the contents
of the machine’s memory is recorded. Instead
of program and data files, we must look on
them as binary and ASCII files.

A binary file is usually used to store
programs, since it is created by the operating
system to store the contents of memory
between a starting location and an end
location. It is called a binary file because it
stores on tape the binary value in each
memory location within the assigned memory
area.

Basic statements are stored in memory using
tokens. The use of tokens means that Basic
commands are not stored in the same manner
as they are listed on the display or were
entered from the keyboard. Instead, they are
stored in memory in a partly-encoded form.
Being partly encoded, a binary file is a quicker
and more efficient way of storing programs.
Binary files are essential when saving and
loading machine-code programs,

The starting address from which a binary
file will be saved is stored in locarions 172 and
173. These locations are loaded by the save
routine, with the memory locations at which
the save will begin normally set to 0 and 4,
thereby pointing to the start of the Basic text
area at 1024,

They can be altered by the save routine 10
point 10 any location in memory. The end
address of the area of memory to be saved is
stored in locations 174 and 175. Normally,
when saving a Basic program, these are set to
the address of the double-zero byte which

fcontinued on next page)

YOUR COMPUTER, DECEMBER 1981 53

feontinued fram previous page)
terminates the link address. The end address
can be altered to any desired location,

To change either of these addresses one |

cannot use the normal save routine since it
automatically initalises these locations.
Instead, one must write a small machine-code
initialisation routine incorporating the desired
operating-system subroutines. By default, a
Save command will write a binary file and a
Load command will read a binary file.
ASCII files are normally used to store data

bur they can be used 1o store programs. Their |

format is the same as that displayed on the
screen or entered from the keyboard. ASCII
files are created or read almost exclusively by
instructions from within a Basic program. A
binary file is created or read mostly by direct
instructions, though the Load and Save
instructions can be used within a program.
An ASCIHI file must first be opened with an
Open statement which specifies the logical

file, device number, secondary address and file |

name, The operating system interprets these
parameters and allows the user to read or write
the file 1o the specified device.

Data is written 1w an ASCII file on a
particular device with a command to Print to
the specified logical file number, and data is
read by a Read from the logical-file command,

Tape buffer

Whereas a binary file is loaded with the
contents of successive memory locations, an
ASCII file is loaded with a string of variables,
Storing these would require the tape 10 be
turned on and off repeatedly, retaining a few
bytes of data at a time. The Vic overcomes this
by having a 192-byte tape buffer into which all
data to be written to, or read from tape is
loaded, Only when this buffer is full is the tape
motor turned on.

Data 1s stored on tape in blocks of 192 bytes
and since the motor is turned on and off
between blocks, a two-second interval is left
between blocks to allow the motor 1w
accelerate and decelerate. The beginning of

_the 192-character bufler starts at address 828;
the pointer to the start of the buffer is located
at addresses 178 and 179; the number of
characters in a buffer is stored at locarion 166.

These locations can be used by the pro-
grammer to control the amount of space left in
a data file, If; having opened a file on cassette,
the command Poke 166,191 is executed, then
the contents of the tape buffer — even if empty
— are loaded on to the tape. If records are kept
in multiples of 191 bytes, we can very easily
keep null or partially-filled records allowing
future data expansion.

Whether the file being stored is binary or
ASCIL the recording method used is the same
and involves an encoding method peculiar to
Commuodore and designed to ensure maximum
reliability of recording and playback. Each
byte of data or program is encoded by the
operating system using pulses of three distinct
audio frequencies, these are: long pulses witha
frequency of 1,488Hz, medium pulses at
1,953Hz and short pulses at 2,840Hz,

All these pulses are square waves with a
mark-space ratio of 1:1. One cycle of a
medium frequency is 256us. in the high state
and 256us. in the low state.

The operating system takes about 9ms. 1o

54 YOUR COMPUTER, DECEMBER 1981

record a byte of data consisting of the eight
data bits, a word-marker bit and an odd-parity
bit. The data bits are either ones or zeros and
are encoded by a sequence of medium and
short pulses. A one is one cycle of a medium-
length pulse followed by one cycle of a short-
length pulse and zero is one cycle of a short-
length pulse followed by one cycle of a
medium-length pulse. Each bit consists of two
square-wave pulse cycles, one short and one
medium with a total duration of §64us. The
wave-form timing is shown in the diagram in
figure 4, .

The odd-parity bit is required for crror
checking and is encoded like the eight data bits
— using a long and short pulse. Its state is
determined by the contents of the eight data
bits. The word marker separates each byte of
data and also signals to the operating system
the beginning of each byte. The word marker
is encoded as one cycle of a long pulse
followed by one cycle of a medium pulse, see
figure 4,

Figure 4. Operating system pulse sequences.

Since a byte of data is recorded in just
8.96ms., a 192-byte block of data in an ASCII
file should be recorded in slightly more than 1.7
seconds. However, timing such a recording
shows that it takes 5-7 seconds. There are
two causes for this discrepancy in timing.
First, to reduce the possibility of audio
dropouts, the data is recorded twice. Secondly,
a two-second inter-record gap is left between
each record of 192 bytes.

The extensive use of error-checking tech-
nigues is one reason why the tape system on the
Vic is so much better than that available on
most other popular computers. There are two
levels of error checking. The first divides the
data into blocks of eight bytes and then
computes @ ninth byte, the check-sum digir.
The check-sum is obrained by adding the eight
data bytes together; it 1s the least-significant
byte of the result.

On reading the tape, if one bit in the eight
bytes is dropped and a zero becomes a one or
vice versa, the check-sum can be used to detect
this error. To do this, the same procedure to
calculate the check digit is performed. The
result will be different 1o that stored in byte 9
which is the check digit of that block
compured when the tape was recorded.

The second level of error checking involves
recording each block of data twice. This allows
errors detected by the check digit 10 be
corrected during the second reading of the
192-byte data block. By recording the data
twice, a verification can be performed by
comparing the contents of the two blocks.

This will detect the few errors not detected by
the check-sum.

The use of pulse sequences, rather than two
frequencies as in a standard FSK (frequency-
shift keying) recording, has a great advantage
since it allows the operating system o
compensate easily for variations in recording
speed. Normally, a hardware phase-locked-
loop circuit would be used to lock the system
on to the correct frequencies transmitted from
the tape head. The Vic, however, uses sofi-
ware to perform this process.

Inter-record gaps

A 10-second leader is written on the rape
before recording of the data or program
commences. This leader has two functions:
first, it allows the tape motor o reach the
correct speed, and secondly, the sequence of
short pulses written on the leader is used 10
synchronise the read-routine timing 1o the
timing on the tape.

The operating system can thus produce a
correction factor which allows a very wide
variation in tape speed without affecting
reading. The system timing used 1o perform
both reading and writing is very accurate,
based as it 15 on the crystal-controlled system
clock and timer | and timer 2 of VIA # 2.
Inter-record gaps are only used in ASCII files
and their function is to allow the tape motor
time to decelerate after being turned off and
accelerate to the correct speed when turned on
prior to a block read or write.

Each inter-record gap is approximately two
seconds long and is recorded as a sequence of
short pulses in the same manner as the
10-second leader. There is also a gap between
blocks. When the first block of 192 bvtes is
recorded, it is followed by a block end-marker
which consists of one single, long pulse
followed by more than 50 cycles of shon
pulses. Then the second recording of the 192
block starts.

The first record written on the tape after the
10-second leader in both ASCII and binary
files is a 192-character file-header block. The
file header contains the name of the file, the
starting memory location, and the end loca-
tion. In an ASCII file these addresses are the
beginning and end of the tape buffer; in a
binary file they point to the area of memory in
which the program is 10 be stored.

The file name can be up to 128 bytes long,
the length of the file name is stored in location
183, and when read is compared with the
requesied file name in the Load or Open
command. If the name is the same, the operat-
ing system will read the file; if different, it will
search for the next 10-second inter-file gap and
another header block.

The file name is stored during a read or
write operation in a block memory whose
starting address is stored in locations 187 and
188. When the operation is completed these
are reset to point to a location in the operating
system. The starting locarion is normally set 1o
the beginning of the user-memory area.

The starting address is pointed to by the
contents of locations 172 and 173. The end
address is stored in locations 174 and 175.
Normally this is the highest byte of memory
occupied by the program; it can, however, be
altered 1o point to any address, providing it is
greater than the start address.

